Skip to content

Machine Learning Platform: What is iLotusLand Machine Learning Platform?

Posted on September 5, 2023


We can know Machine Learning applications in life, such as Tesla or Google's self-driving cars, Facebook's facial recognition system a few years ago, Apple's Siri virtual assistant. , Amazon's product recommendation system, etc. Netflix movie suggestions... and countless other applications.

Machine Learning has been a worldwide technology craze in recent years. In the industrial world, big companies like Google, Facebook, Microsoft, Tesla, and Amazon to startups all invest in Machine Learning.

Since then, a series of applications using Machine Learning have been born to serve all areas of life, from computer science to less related fields such as physics, chemistry, medicine, politics, etc., that can’t help but mention iLotusLand.

I. Machine Learning – What is machine learning?

Machine Learning is an algorithm that allows applications or software to predict outcomes without requiring explicit programming.


The system automatically collects data. Specifically, in this case, we often click, search history on a particular media, or when we stop to read, interact or share something. The application will provide relevant information based on your search or interactions.

With online websites, advertising tools use machine learning technology to track consumer clicks, reads, and purchases to personalize online advertising in real-time, meeting each user’s diverse needs.

II. What is the iLotusLand Machine Learning Platform?

iLotusland is the No.1 environmental IoT data monitoring platform in Vietnam, which supports remote monitoring with six core features: Data collection, Camera connection, Remote monitoring, Reporting, Communication, Cost Management for Environmental Monitoring serving multiple industries such as Wastewater, Emissions, Energy, Steel, Cement, Agriculture, F&B, Oil and Gas, etc.

iLotusLand machine learning platform

Applying Machine Learning to the iLotusLand IoT platform to make forecasts about specific industry indicators helps businesses adapt to cases in the short-term future, thereby having an implementation plan to meet the actual situation.

III. Machine Learning Algorithms

Machine Learning involves displaying large amounts of data so that the machine can learn and make predictions, find patterns, or classify the data. Machine learning types are supervised, unsupervised, and reinforcement learning.

Machine learning algorithm

3.1 Supervised learning

Supervised learning is one of the most basic types of machine learning, which is a group of algorithms that use labeled data to model input and output data. Supervised learning uses two primary groups of problems, classification and regression, turning the output into discrete values (for the regression) and continuous values (for the classification).

When using this supervised learning method, the system can predict future outcomes based on past data, requiring at least one input and output data to be supplied to the model for training with this method.

Besides building strong models, collecting good and reasonable data also plays an important role when solving real-world problems.

Labeled Data and Unlabeled Data in Supervised Learning

Supervised learning serves many business purposes, including sales forecasting, inventory optimization, and fraud detection. Some other cases are listed below:

  • Real estate price prediction
  • Classification of banking transactions as fraud or not?
  • Find factors that are risk factors for disease.
  • Identify low or high-risk borrowers.
  • Failure forecasting for mechanical parts of industrial equipment


3.2 Unsupervised learning

Unsupervised learning can work with unlabeled data. Because of this advantage when using this learning method will reduce human labor to make the machine read and work with larger data files. Unsupervised learning is more about characterizing or characterizing data.

However, with the unsupervised learning method, the reliability and accuracy are not equal to the supervised learning method.

Unsupervised learning

3.3 Reinforcement learning

Reinforcement learning is training a Machine Learning model to make a sequence of decisions. In Reinforcement learning, the AI faces a similar situation in the game. The computer runs trial and error to devise a solution to the problem.

For the machine to solve the problem as desired, the agent will receive a reward or penalty for the actions it performs, thereby maximizing the reward for output as expected results.

Reinforcement learning

By leveraging the power of multiple experiments, reinforcement learning is currently the most effective way to generate creative cues for machines. Contrary to AI, this learning method gathers from experience. Therefore, this method should run on a robust enough computing infrastructure to augment multiple experiments.

Some definitions of terms appear in Reinforcement Learning:

  • Environment: The space for the machine to interact with.
  • Agent (machine): The engine observes the environment to generate the corresponding action.
  • Reward: The corresponding reward from the environment received by the machine when acting.

IV. How does machine learning work?

Machine Learning can be visualized in the following figure:

Machine learning model

V. iLotusLand Machine Learning Platform Application

iLotusLand Machine Learning Platform promises to bring several valuable solutions to corporate customers, partners, or government entities such as:

  • Solutions for Data Scientists
  • Solutions for Integrated Units
  • Solutions for Eco-Industrial Park
  • Solutions for the Department
  • Solutions for Smart City

iLotusLand – The first IoT platform in Vietnam. We hope to bring a complete package of remote data monitoring solutions to industries, factories and Predictive (Machine Learning) solutions to help customers develop sustainably with their environmental data .

More information: 
Hotline: +84 909 403 778
Facebook: iLotusLand – Leading in Industrial IoT Solutions
Linked in: iLotusLand – The 1st IoT Platform in Vietnam 


What’s next?

Khí thải công nghiệp tác động đến môi trường
Môi trường không khí đang phải đối mặt với một thách thức nghiêm trọng, khi khí thải từ hoạt động công nghiệp đang tác động mạnh mẽ đến chất lượng không khí mà chúng ta hít thở hàng ngày. Trong bài viết này, chúng ta sẽ tìm hiểu cận cảnh về khí thải công nghiệp và tác động của nó đến mức độ ô nhiễm không khí. Đồng thời, xem xét những khía cạnh ảnh hưởng đến sức khoẻ con người và hệ sinh thái tự nhiên. Khí Thải Công Nghiệp và Nguyên Nhân Gây Ô Nhiễm Không Khí Khí…
Read more
Today, air quality has become a prominent concern for both human health and the natural environment. Increasing urbanization, industrialization, and climate change have led to increasingly severe air pollution. In response to this issue, the Internet of Things (IoT) has emerged as a powerful tool for monitoring ambient air quality. This article will discuss the application of IoT in this field and introduce iLotusLand's IoT solution for monitoring ambient air.
Read more
iLotusLand software supports the synthesis and report of measured parameters from the monitoring system, while controlling and analyzing real-time IoT environmental monitoring data. The software relies on data to make intelligent decisions in monitoring environmental waste processing. The measured parameters will always be continuously recorded and in real-time.
Read more
Các hoạt động kinh doanh sản xuất của dự án đều có phát sinh nguồn ô nhiễm và tác động ảnh hưởng trực tiếp đến môi trường xung quanh. Vì thế, để nâng cao ý thức bảo vệ môi trường của doanh nghiệp, các đơn vị sản xuất kinh doanh cần thực hiện một số hồ sơ môi trường. Trong đó có báo cáo quan trắc môi trường định kỳ. Quan trắc môi trường định kỳ là gì? Quan trắc môi trường định kỳ là thường xuyên giám sát, theo dõi số lượng, diễn biến, thực trạng của các nguồn…
Read more
Carbon Market
“Kinh tế xanh” với “Thị trường tín chỉ Carbon” là những cơ chế tài chính góp phần mạnh mẽ vào việc giảm thiểu tác động của biến đổi khí hậu và giải quyết các thách thức môi trường. Sự kết nối song song này sẽ giúp đẩy nhanh quá trình chuyển đổi sang nền kinh tế xanh bền vững hơn theo xu hướng toàn cầu. Hãy cùng iLotusLand khởi xướng phong trào phát triển thị trường tín chỉ Carbon tại Việt Nam. Kinh tế Xanh - Hướng đi bền vững Biến đổi khí hậu hiện đang gây ra một số…
Read more
Thông báo là công cụ cho bạn biết điều gì đang xảy ra khi dữ liệu hoặc thiết bị gặp sự cố cụ thể mà người quản lý hoặc nhà điều hành quan tâm. Sự cố thất thường trong việc vận hành là bài toán đặt ra cho các nhà quản lý, vận hành hệ thống liên quan đến trạm quan trắc môi trường cần được tính toán, giải quyết tốc độ nhất có thể. Điều này có thể dẫn đến trì trệ hệ thống, ảnh hưởng chất lượng đầu ra, trực tiếp gây áp lực đến ô nhiễm môi…
Read more

Get started with iLotusLand today

Consulting on solutions to monitor and manage environmental monitoring data easily and effectively.